Neural Scene Representations and Differentiable Rendering

Michael Niemeyer

Autonomous Vision Group MPI for Intelligent Systems and University of Tübingen Neural Scene Representations for 3D Reconstruction

Input Images

Can we learn 3D reconstruction from data?

3D Datasets and Repositories

[Newcombe et al., 2011]

[Wu et al., 2015]

[Choi et al., 2011]

[Dai et al., 2017]

[Chang et al., 2015]

[Chang et al., 2017]

3D Reconstruction from a 2D Image

Input Images

Neural Network

3D Reconstruction

What is a good output representation?

Voxels:

- ► Discretization of 3D space into grid
- ► Easy to process with neural networks
- Cubic memory $O(n^3) \Rightarrow$ limited resolution
- Manhattan world bias

[Maturana et al., IROS 2015]

Points:

- ► Discretization of surface into 3D points
- Does not model connectivity / topology
- Limited number of points
- ► Global shape description

[Fan et al., CVPR 2017]

Meshes:

- ► Discretization into vertices and faces
- ► Limited number of vertices / granularity
- Requires class-specific template or –
- ► Leads to self-intersections

[Groueix et al., CVPR 2018]

This work:

- ► Implicit representation ⇒ No discretization
- ► Arbitrary topology & resolution
- ► Low memory footprint
- ► Not restricted to specific class

Key Idea:

► Do not represent 3D shape explicitly

Key Idea:

- ► Do not represent 3D shape explicitly
- Instead, consider surface implicitly as decision boundary of a non-linear classifier:

Key Idea:

- ► Do not represent 3D shape explicitly
- Instead, consider surface implicitly as decision boundary of a non-linear classifier:

Remarks:

• The function f_{θ} models an **occupancy field**

Key Idea:

- ► Do not represent 3D shape explicitly
- Instead, consider surface implicitly as decision boundary of a non-linear classifier:

Remarks:

- The function f_{θ} models an **occupancy field**
- ► Also possible: signed distance field [Park et al., 2019]

Network Architecture

Training Objective

Occupancy Network:

$$\mathcal{L}(\theta, \psi) = \sum_{j=1}^{K} \mathsf{BCE}(f_{\theta}(p_{ij}, z_i), o_{ij})$$

- K: Randomly sampled 3D points (K = 2048)
- ► BCE: Cross-entropy loss

Training Objective

Variational Occupancy Encoder:

$$\mathcal{L}(\theta, \psi) = \sum_{j=1}^{K} \mathsf{BCE}(f_{\theta}(p_{ij}, z_i), o_{ij}) + KL\left[q_{\psi}(z | (p_{ij}, o_{ij})_{j=1:K}) \| p_0(z)\right]$$

- K: Randomly sampled 3D points (K = 2048)
- ► BCE: Cross-entropy loss
- ► q_{ψ} : Encoder

Multiresolution IsoSurface Extraction (MISE):

- Build octree by incrementally querying the occupancy network
- Extract triangular mesh using marching cubes algorithm (1-3 seconds in total)

Results

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.

Results

Applications

Appearance

Motion

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019.

3D Scenes

Differentiable Rendering

19
Differentiable Surface Rendering

Forward Pass (Rendering)

Forward Pass:

► For all pixels **u**

- $\blacktriangleright\,$ For all pixels ${\bf u}$
- Find surface point p̂ along ray w via ray marching and root finding (secant method)

- $\blacktriangleright\,$ For all pixels ${\bf u}$
- Find surface point p̂ along ray w via ray marching and root finding (secant method)

Forward Pass:

- $\blacktriangleright\,$ For all pixels ${\bf u}$
- Find surface point p̂ along ray w via ray marching and root finding (secant method)

- $\blacktriangleright\,$ For all pixels ${\bf u}$
- Find surface point p̂ along ray w via ray marching and root finding (secant method)

- $\blacktriangleright\,$ For all pixels ${\bf u}$
- Find surface point p̂ along ray w via ray marching and root finding (secant method)

- $\blacktriangleright\,$ For all pixels ${\bf u}$
- Find surface point p̂ along ray w via ray marching and root finding (secant method)
- Evaluate texture field $\mathbf{t}_{\theta}(\hat{\mathbf{p}})$ at $\hat{\mathbf{p}}$

- $\blacktriangleright\,$ For all pixels ${\bf u}$
- Find surface point p̂ along ray w via ray marching and root finding (secant method)
- Evaluate texture field $\mathbf{t}_{\theta}(\hat{\mathbf{p}})$ at $\hat{\mathbf{p}}$
- ► Insert color $\mathbf{t}_{\theta}(\hat{\mathbf{p}})$ at pixel \mathbf{u}

► Image Observation I

- ► Image Observation I
- \blacktriangleright Loss $\mathcal{L}(\mathbf{\hat{I}},\mathbf{I}) = \sum_{\mathbf{u}} \|\mathbf{\hat{I}_u} \mathbf{I_u}\|$

- ► Image Observation I
- \blacktriangleright Loss $\mathcal{L}(\mathbf{\hat{I}},\mathbf{I}) = \sum_{\mathbf{u}} \|\mathbf{\hat{I}}_{\mathbf{u}} \mathbf{I}_{\mathbf{u}}\|$
- ► Gradient of loss function:

$$\begin{array}{lcl} \frac{\partial \mathcal{L}}{\partial \theta} & = & \sum_{\mathbf{u}} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{I}}_{\mathbf{u}}} \cdot \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} \\ \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} & = & \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} \end{array}$$

- ► Image Observation I
- \blacktriangleright Loss $\mathcal{L}(\mathbf{\hat{I}},\mathbf{I}) = \sum_{\mathbf{u}} \|\mathbf{\hat{I}_u} \mathbf{I_u}\|$
- ► Gradient of loss function:

$$\begin{array}{lcl} \frac{\partial \mathcal{L}}{\partial \theta} & = & \sum_{\mathbf{u}} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{I}}_{\mathbf{u}}} \cdot \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} \\ \\ \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} & = & \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} \end{array}$$

• Differentiation of $f_{\theta}(\hat{\mathbf{p}}) = \tau$ yields: $\frac{\partial \hat{\mathbf{p}}}{\partial \theta} = -\mathbf{w} \left(\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w}\right)^{-1} \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta}$

- ► Image Observation I
- \blacktriangleright Loss $\mathcal{L}(\mathbf{\hat{I}},\mathbf{I}) = \sum_{\mathbf{u}} \|\mathbf{\hat{I}_u} \mathbf{I_u}\|$
- ► Gradient of loss function:

$$\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{\mathbf{u}} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{I}}_{\mathbf{u}}} \cdot \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta}$$
$$\frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} = \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta}$$

• Differentiation of $f_{\theta}(\hat{\mathbf{p}}) = \tau$ yields: $\frac{\partial \hat{\mathbf{p}}}{\partial \theta} = -\mathbf{w} \left(\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w}\right)^{-1} \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta}$

- ► Image Observation I
- \blacktriangleright Loss $\mathcal{L}(\mathbf{\hat{I}},\mathbf{I}) = \sum_{\mathbf{u}} \|\mathbf{\hat{I}_u} \mathbf{I_u}\|$
- ► Gradient of loss function:

$$\begin{array}{lcl} \frac{\partial \mathcal{L}}{\partial \theta} & = & \sum_{\mathbf{u}} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{I}}_{\mathbf{u}}} \cdot \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} \\ \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} & = & \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} \end{array}$$

• Differentiation of $f_{\theta}(\hat{\mathbf{p}}) = \tau$ yields: $\frac{\partial \hat{\mathbf{p}}}{\partial \theta} = -\mathbf{w} \left(\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w}\right)^{-1} \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta}$

- ► Image Observation I
- \blacktriangleright Loss $\mathcal{L}(\mathbf{\hat{I}},\mathbf{I}) = \sum_{\mathbf{u}} \|\mathbf{\hat{I}_u} \mathbf{I_u}\|$
- ► Gradient of loss function:

$$\begin{array}{lll} \frac{\partial \mathcal{L}}{\partial \theta} & = & \sum_{\mathbf{u}} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{I}}_{\mathbf{u}}} \cdot \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} \\ \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} & = & \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} \end{array}$$

► Differentiation of $f_{\theta}(\hat{\mathbf{p}}) = \tau$ yields: $\frac{\partial \hat{\mathbf{p}}}{\partial \theta} = -\mathbf{w} \left(\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w} \right)^{-1} \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta}$

⇒ Analytic solution and no need for storing intermediate results

Results

DVR allows for 3D reconstruction from multi-view images of real scenes

Implicit Differentiable Renderer

Related work by Lipman et al.:

- Condition on surface normal and view direction for view-dependent appearance
- Optimize geometry, appearance and **camera poses**

Differentiable Volume Rendering

Novel View Synthesis

Task: Given a set of images of a scene (left), render novel viewpoints (right)

NeRF: Representing Scenes as Neural Radiance Fields

- Vanilla ReLU MLP that maps from location/view direction to color/density
- **Density** σ describes how solid/transparent a 3D point is (can model, e.g., fog)
- ► Conditioning on view direction allows for modeling view-dependent effects

Volume Rendering

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

NeRF Training

► Shoot ray, render ray to pixel, minimize reconstruction error via backpropagation

Fourier Features

NeRF (Naive)

NeRF (with positional encoding)

Essential trick: Compute **positional encoding** for input point x and direction d

Results

NeRF achieves impressive view synthesis:

Tancik et al.: Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. NeurIPS, 2020.

Scaling to Real-World Scenarios

Scaling to Real-World Scenarios

► In NeRF, many input images are assumed to be given

Scaling to Real-World Scenarios

► In the real world, we often have only **sparse inputs**

How can we make NeRF work for sparse input scenarios?

✓ Input Views

Unobserved Views

Niemeyer, Barron, Mildenhall, Sajjadi, Geiger, Radwan: RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs. CVPR, 2022.

Niemeyer, Barron, Mildenhall, Sajjadi, Geiger, Radwan: RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs. CVPR, 2022.

We perform scene space annealing over first iterations to avoid degenerate solutions:

In summary, the **key ideas** of RegNeRF are

- 1. Regularizing the geometry prediction of unseen viewpoints
- 2. Regularizing the appearance prediction of unseen viewpoints
- 3. Performing scene space annealing over the first iterations

Comparison mipNeRF and RegNeRF for three input images:

Comparison mipNeRF and RegNeRF for three input images:

Comparison mipNeRF and RegNeRF for three input images:

Performance wrt. the number of input views:

Ablation Study

Summary

Summary

- Occupancy Networks: neural fields are a powerful 3D representation
- ► DVR: neural fields can be inferred from 2D supervision via differentiable rendering
- ► RegNeRF: Regularization allows to scale to real-world scenarios

Limitations

- ► Incorporating compositional scene understanding
- Scaling to more cluttered real-world scenes
- ► Faster training and inference for sparse input scenarios