Generative Neural Scene Representations for 3D-Aware Image Synthesis

Michael Niemeyer

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems Tübingen

Dec 7, 2021

Covered Papers

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis

Katja Schwarz and Yiyi Liao and Michael Niemeyer and Andreas Geiger NeurIPS 2020

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Michael Niemeyer, Andreas Geiger CVPR 2021

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance FieldsMichael Niemeyer, Andreas Geiger 3DV 2021

Collaborators

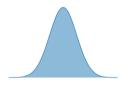
Katja Schwarz

Yiyi Liao

Andreas Geiger

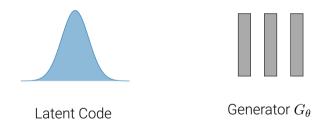
Generative Models are great!

Sample a latent code from the prior distribution.

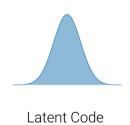


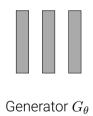
Latent Code

Pass latent code to trained generator G_{θ} .



The generator outputs a synthesized image.

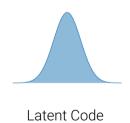


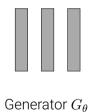


Generated Image*

^{*}The generated images are samples from StyleGAN2.

Sample more latent codes to get different generated images.

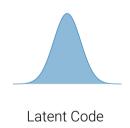


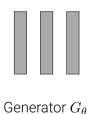


Generated Image*

^{*}The generated images are samples from StyleGAN2.

Sample more latent codes to get different generated images.





Generated Image*

^{*}The generated images are samples from StyleGAN2.

Is the ability to sample photorealistic images all we want?

For many applications, we require **control over the generation process**:

For many applications, we require **control over the generation process**:

Note: This and the following videos are only shown when opened with a supported PDF reader (e.g. Okular).

For many applications, we require **control over the generation process**:

Video Source: Gran Turismo 7 Trailer

For many applications, we require **control over the generation process**:

Virtual Reality

Goal: A generative model for 3D-aware image synthesis which allows us to:

► Generate photorealistic images

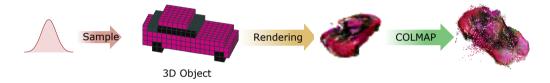
- ► Generate photorealistic images
- ► Control individual objects wrt. their pose, size, and position in 3D

- ► Generate photorealistic images
- ► Control individual objects wrt. their pose, size, and position in 3D
- ► Control camera viewpoint in 3D

- ► Generate photorealistic images
- ► Control individual objects wrt. their pose, size, and position in 3D
- ► Control camera viewpoint in 3D
- ► Train from collections of unposed images

What representation should we use for 3D-aware image synthesis?

Voxel-based 3D Shape with Volumetric Rendering



PlatonicGAN [Henzler et al., ICCV 2019]

Voxel-based 3D Shape with Volumetric Rendering

PlatonicGAN [Henzler et al., ICCV 2019]

→ Multi-view consistent

Voxel-based 3D Shape with Volumetric Rendering

PlatonicGAN [Henzler et al., ICCV 2019]

- → Multi-view consistent
- Low image fidelity, high memory consumption

Voxel-based 3D Latent Feature with Learnable Projection

HoloGAN [Nguyen-Phuoc et al., ICCV 2019]

Voxel-based 3D Latent Feature with Learnable Projection

HoloGAN [Nguyen-Phuoc et al., ICCV 2019]

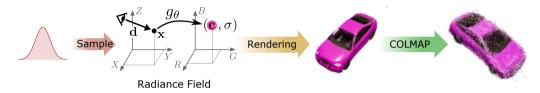
+ High image fidelity

Voxel-based 3D Latent Feature with Learnable Projection

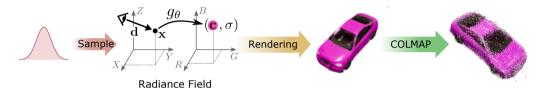
HoloGAN [Nguyen-Phuoc et al., ICCV 2019]

- + High image fidelity
- Object identity may vary with viewpoint due to learnable projection

Generative Radiance Fields

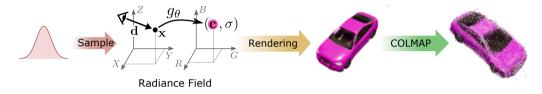


Generative Radiance Fields



+ Continuous representation, multi-view consistent

Generative Radiance Fields



- + Continuous representation, multi-view consistent
- → High image fidelity, low memory consumption

Sample camera matrix **K**, camera pose $\xi \sim p_{\xi}$, and patch sampling pattern $\nu \sim p_{\nu}$.

 \mathbf{K}

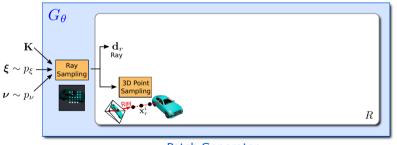
 $\boldsymbol{\xi} \sim p_{\boldsymbol{\xi}}$

 $\nu \sim p_{\nu}$

Pass K, ξ , and ν to generator G_{θ} and sample pixels / rays on image plane.

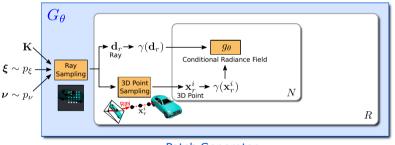
Patch Generator

For each ray, get viewing direction \mathbf{d}_r and sample 3D points \mathbf{x}_r^i along ray.



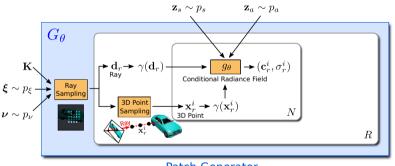
Patch Generator

Pass \mathbf{d}_r and \mathbf{x}_r^i to positional encoding γ and then to the conditional radiance field g_θ .



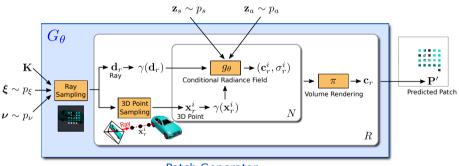
Patch Generator

Sample latent shape and appearance codes $\mathbf{z}_s, \mathbf{z}_a$ and pass them to g_{θ} .



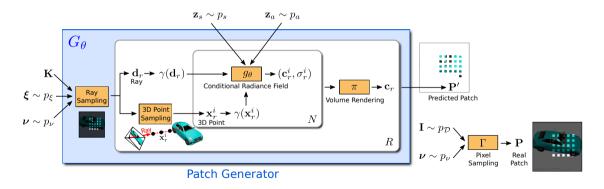
Patch Generator

Perform volume-rendering for each ray and get predicted patch \mathbf{P}' .

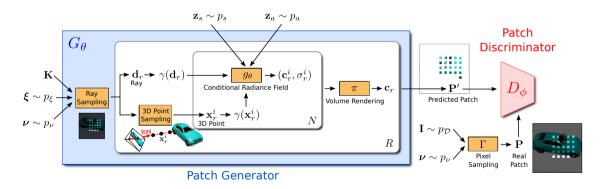


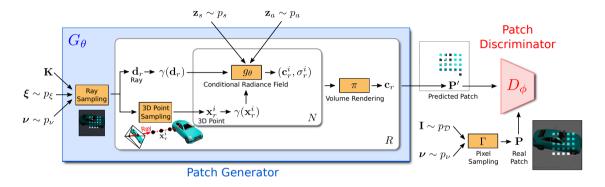
Patch Generator

Sample patch **P** from real image **I** drawn from the data distribution $p_{\mathcal{D}}$.



Pass fake and real patch \mathbf{P}' , \mathbf{P} to discriminator D_{ϕ} and train with adversarial loss.





- ightharpoonup Generator/discriminator for **image patches** of size 32 imes 32 pixels
- ► Patches sampled at **random scale** using dilation

Volume Rendering

Rendering model for ray r(t) = o + td:

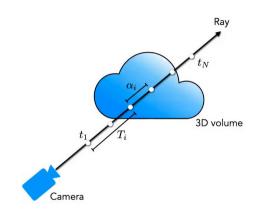
$$Cpprox \sum_{i=1}^{N} T_i lpha_i c_i$$
 colors weights

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$$

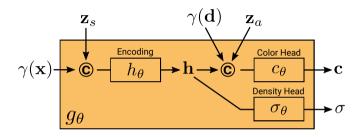
How much light is contributed by ray segment i:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$



How do we parametrize Conditional Radiance Fields?

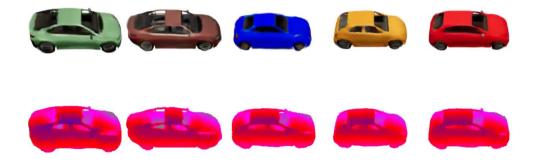
Conditional Radiance Fields



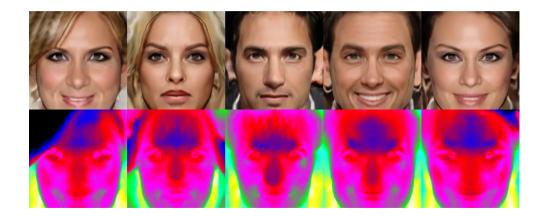
- ► Conditional radiance fields as fully-connected MLPs with ReLU activation
- ▶ Shape code \mathbf{z}_s concatenated with encoded 3D location $\gamma(\mathbf{x})$
- ▶ Appearance code \mathbf{z}_a concatenated with encoded viewing direction $\gamma(\mathbf{d})$

How well does it work?

Results on synthetic Carla dataset at 256^2 pixels:



Results on real CelebA-HQ dataset at 256^2 pixels:



How can we scale to more complex, multi-object scenes?

GIRAFFE: Compositional Generative Neural Feature Fields

GRAF:

► Incorporate a **3D representation** into the generative model

GIRAFFE: Compositional Generative Neural Feature Fields

GRAF:

► Incorporate a **3D representation** into the generative model

GIRAFFE:

► Incorporate a **compositional 3D scene representation** into the generative model

GIRAFFE: Compositional Generative Neural Feature Fields

GRAF:

► Incorporate a **3D representation** into the generative model

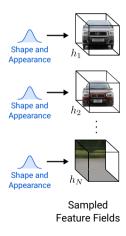
GIRAFFE:

- ► Incorporate a **compositional 3D scene representation** into the generative model
- ► Incorporate a **neural renderer** to yield fast and high-quality inference

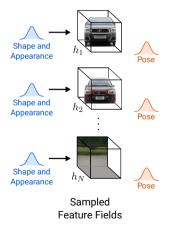
Sample N shape and appearance codes.

GIRAFFF

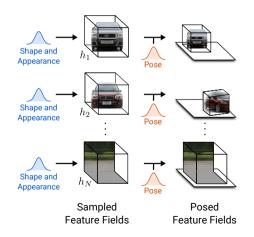
Get N feature fields. Note: We show features in RGB color for clarity.



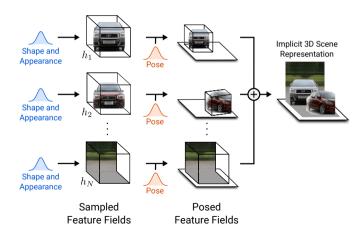
Sample size and pose for each feature field.



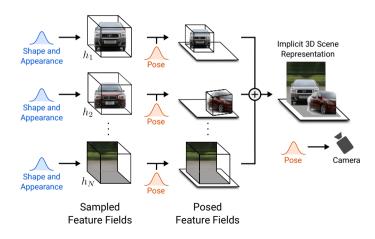
Get posed feature fields.



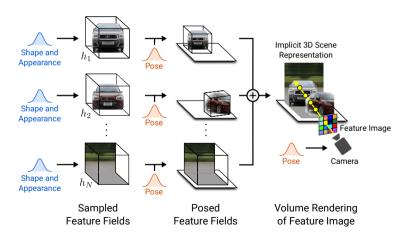
Composite all feature fields to one 3D scene representation.



Sample a camera pose.

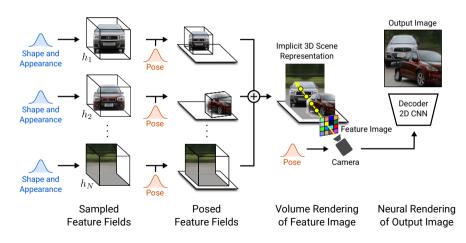


Perform volume rendering and get feature image.



GIRAFFF

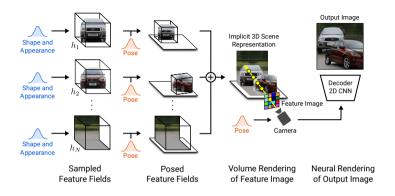
Pass feature image to neural renderer to obtain final output.



GIRAFFF

At test time, we can sample individual codes and control the poses.

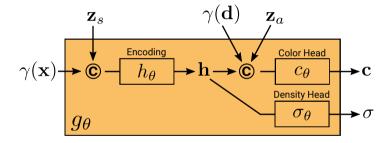




- ► We train with adversarial loss **on full image**
- lacktriangle We volume-render the feature image at 16 imes 16 pixels

How do we parametrize Feature Fields?

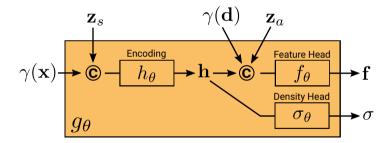
Recall the conditional radiance field from before:



We replace the RGB color head with a **feature head**:



We replace the RGB color head with a feature head:



How do we combine multiple Feature Fields?

Scene Composition

We have N feature fields

$$h_i(\mathbf{x}, \mathbf{d}) = (\sigma_i, \mathbf{f}_i)$$

which predict a density σ_i and a feature vector \mathbf{f}_i at (\mathbf{x}, \mathbf{d}) .

Final density at (\mathbf{x}, \mathbf{d}) :

$$\sigma = \sum_{i=1}^{N} \sigma_i$$

Final feature vector at (\mathbf{x}, \mathbf{d}) :

$$\mathbf{f} = \frac{1}{\sigma} \sum_{i=1}^{N} \sigma_i \mathbf{f}_i$$

How well does it work?

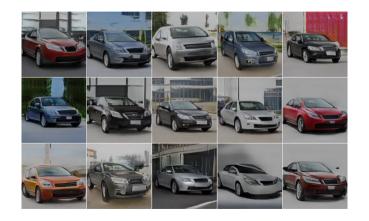
We compare object translation for a 2D-based GAN (left) and our method (right):

We can perform more complex operations like circular translations

GIRAFFF

We can add more objects at test time (trained on two-object)

We can rotate the object



We can translate the object

We can change the object shape

We can change the object appearance

We can generate out-of-distribution samples

Total Rendering Time

	64×64	256×256
GRAF	110.1ms	1595.0ms
GIRAFFE	4.8ms	5.9ms

- ► CNN-based neural renderer yields faster inference.
- lacktriangle We always volume-render the feature image at 16 imes 16 pixels.

How can we scale to more complex camera distributions?

GRAF, GIRAFFE:

- ► Learn a 3D-aware image generator with uniform prior on camera distributions
- ► Requires careful tuning and results degrade if they do not match the data distribution

GRAF, GIRAFFE:

- ► Learn a 3D-aware image generator with uniform prior on camera distributions
- ► Requires careful tuning and results degrade if they do not match the data distribution

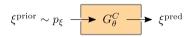
CAMPARI:

► Learn a 3D aware image generator and a **camera generator** jointly.

Sample prior camera ${\pmb \xi}^{\rm prior} \sim p_{\xi}.$

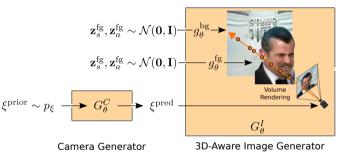
 $\xi^{\mathrm{prior}} \sim p_{\xi}$

Pass $\pmb{\xi}^{\mathrm{prior}}$ to camera generator G^C_{θ} and obtain predicted camera ξ^{pred} .

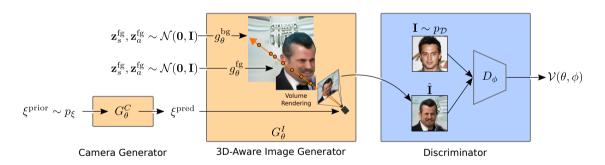


Camera Generator

Pass ξ^{pred} and sampled FG / BG latent codes to 3D-aware image generator

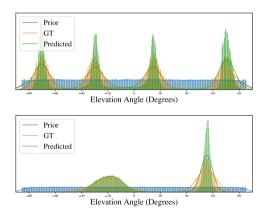


Train entire method with GAN objective (similar to GRAF, GIRAFFE)

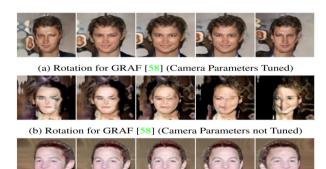


How well does it work?

CAMPARI learns to match the GT distribution for synthetic datasets



Results on CelebA



(c) Rotation for Ours (No Tuning Required)

Summary

▶ We propose novel methods for 3D controllable image synthesis

- ► We propose novel methods for 3D controllable image synthesis
- ► Train from raw, unposed image collections

- ► We propose novel methods for 3D controllable image synthesis
- ► Train from raw, unposed image collections
- ▶ We incorporate **compositional 3D scene structure** into the generative model

- ▶ We propose novel methods for 3D controllable image synthesis
- ► Train from raw, unposed image collections
- ▶ We incorporate **compositional 3D scene structure** into the generative model
- ▶ We have explicit control over **individual objects** during synthesis

- ▶ We propose novel methods for 3D controllable image synthesis
- ► Train from raw, unposed image collections
- ▶ We incorporate **compositional 3D scene structure** into the generative model
- ► We have explicit control over **individual objects** during synthesis
- ► Future research: scale to more complex multi-object scenes

- ▶ We propose novel methods for 3D controllable image synthesis
- ► Train from raw, unposed image collections
- ▶ We incorporate **compositional 3D scene structure** into the generative model
- ► We have explicit control over **individual objects** during synthesis
- ► Future research: scale to more complex multi-object scenes
- ► Future research: disentangle lighting, materials, etc.

Summary

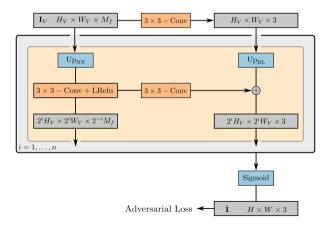
This research is very activate and leads to state-of-the-art results:

Thank you!

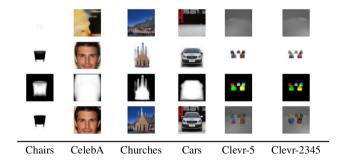
For more information, check out

https://m-niemeyer.github.io/

Neural Renderer Architecture



Disentanglement Results



Quantitative Results

	Chairs	Cats	CelebA	Cars	Churches
2D GAN [57]	59	18	15	16	19
Plat. GAN [31]	199	318	321	299	242
HoloGAN [62]	59	27	25	17	31
GRAF [76]	34	26	25	39	38
Ours	20	8	6	16	17

Table 1: Quantitative Comparison. We report the FID score (\downarrow) at 64^2 pixels for baselines and our method.

	CelebA-HQ	FFHQ	Cars	Churches	Clevr-2
HoloGAN [62]	61	192	34	58	241
w/o 3D Conv	33	70	49	66	273
GRAF [76]	49	59	95	87	106
Ours	21	32	26	30	31

Table 2: Quantitative Comparison. We report the FID score (\downarrow) at 256^2 pixels for the strongest 3D-aware baselines and our method.

Baseline Comparison

(a) 360° Object Rotation for HoloGAN [62].

(b) 360° Object Rotation for GRAF [76].

(c) 360° Object Rotation for Our Method.