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Abstract. Recent advances in view synthesis and real-time rendering
have achieved photorealistic quality at impressive rendering speeds. While
Radiance Field-based methods achieve state-of-the-art quality in chal-
lenging scenarios such as in-the-wild captures and large-scale scenes, they
often suffer from excessively high compute requirements linked to volu-
metric rendering. Gaussian Splatting-based methods, on the other hand,
rely on rasterization and naturally achieve real-time rendering but suffer
from brittle optimization heuristics that underperform on more challeng-
ing scenes. In this work, we present RadSplat, a lightweight method for
robust real-time rendering of complex scenes. Our main contributions
are threefold. First, we use radiance fields as a prior and supervision
signal for optimizing point-based scene representations, leading to im-
proved quality and more robust optimization. Next, we develop a novel
pruning technique reducing the overall point count while maintaining
high quality, leading to smaller and more compact scene representations
with faster inference speeds. Finally, we propose a novel test-time filter-
ing approach that further accelerates rendering and allows to scale to
larger, house-sized scenes. We find that our method enables state-of-the-
art synthesis of complex captures at 900+ FPS.

Keywords: real-time rendering · gaussian splatting · neural fields

1 Introduction

Neural fields [6, 31, 42, 69] have emerged as one of the most popular repre-
sentations for 3D vision due to their simple design, stable optimization, and
state-of-the-art performance. After their introduction in the context of 3D re-
construction [6, 31, 42, 69], neural fields have been widely adopted and set new
standards in tasks such as view synthesis [1, 2, 32], 3D and 4D reconstruc-
tion [25, 39, 43, 44, 46, 73], and generative modeling [27, 38, 47, 59, 64]. While
neural field methods have achieved unprecedented view synthesis quality even
for challenging real-world captures [2, 28, 32], most approaches are limited by
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Fig. 1: RadSplat enables high-quality real-time view synthesis for large-scale house-
level scenes [2] at over 900 frames per second (top). In contrast to 3D Gaussian Splat-
ting [21], our method allows for robust synthesis of complex captures while rendering
3,000× faster than the state-of-the-art in offline view synthesis, Zip-NeRF [2] (bottom).

the high compute costs of volumetric rendering. In order to achieve real-time
frame rates, recent works reduce network complexity [12,35], cache intermediate
outputs [10, 56], or extract 3D meshes [41, 53, 72, 73]. Nevertheless, all methods
essentially trade reduced quality and increased storage costs for faster rendering,
and are incapable of maintaining state-of-the-art quality in real-time – the goal
of this work.

Recently, rasterization-based 3D Gaussian Splatting (3DGS) [21] has emerged
as a natural alternative to neural fields. The representation admits real-time
frame rates with view synthesis quality rivaling the state-of-the-art in neural
fields. 3DGS, however, suffers from a challenging optimization landscape and
an unbounded model size. The number of Gaussian primitives is not known
a priori, and carefully-tuned merging, splitting, and pruning heuristics are re-
quired to achieve satisfactory results. The brittleness of these heuristics become
particularly evident in large scenes where phenomena such as exposure varia-
tion, motion blur, and moving objects are unavoidable. An increasing number
of primitives further leads to a potentially-unmanageable memory footprint and
reduced rendering speed, strongly limiting model quality for larger scenes.

In this work, we present RadSplat, a lightweight method for robust real-
time rendering of complex real-world scenes. Our method achieves smaller model
sizes and faster rendering than 3DGS while strongly exceeding reconstruction
quality. Our key idea is to combine the stable optimization and quality of neural
fields to act as a prior and supervision signal for the optimization of point-based
scene representations. We further introduce a novel pruning procedure and test-



RadSplat: Radiance Field-Informed Gaussian Splatting 3

time visibility rendering strategies to significantly reduce memory usage and
increase rendering speed without a corresponding loss in quality. In summary,
our contributions are as follows:

1. The use of radiance fields as a prior and to handle the complexity of real-
world data when optimizing point-based 3DGS representations.

2. A novel pruning strategy that reduces the number of Gaussian primitives by
up to 10x whilst improving quality and rendering speed.

3. A novel post-processing step enabling viewpoint-based filtering, further ac-
celerating rendering speed without any reduction in quality.

Our method exhibits state-of-the-art reconstruction quality on both medium and
large scenes, with PSNR up to 1.87 dB higher than 3DGS and SSIM exceeding
Zip-NeRF, the current state-of-the-art in offline view synthesis (see Fig. 1). At
the same time, our method renders up to 907 frames per second, over 3.6× faster
than 3DGS and more than 3,000× faster than Zip-NeRF.

2 Related Work

Neural Fields. Since their introduction in the context of 3D reconstruction [6,
31, 42, 69], neural fields have become one of the most promising methods for
many 3D vision tasks including 3D/4D reconstruction [25, 39, 43, 44, 46, 73], 3D
generative modeling [4,27,38,47,59,64], and view synthesis [1,2,32]. Key to their
success is among others simplicity, state-of-the-art performance, and robust op-
timization [69]. In contrast to previous representations such as point- [45,48,50],
voxel- [30,49], or mesh-based [17,65] representations, neural fields do not usually
require complex regularization, hand-tuned initialization or optimization control
modules as they admit end-to-end optimization and can be queried at arbitrary
spatial locations. In the context of view synthesis, Neural Radiance Fields [32]
(NeRF) in particular have revolutionized the field by leveraging volumetric ren-
dering, which has proven more robust than prior surface-based rendering ap-
proaches [40, 61, 74]. In this work, we employ the robustness and simplicity of
neural fields to enable real-time rendering for complex scenes at high quality.
More specifically, we use the state-of-the-art radiance field Zip-NeRF [2] to act
as a robust prior and source of reliable supervision to train a point-based repre-
sentation better suited for real-time rendering.

Neural Fields for Real-Time Rendering. NeRF-based models lead to state-
of-the-art view synthesis but are typically slow to render so that a variety of
works are proposed for speeding up training and inference. While neural fields
were initially built on large, compute-heavy multi-layer perceptrons (MLPs) [6,
31, 32, 42], recent works propose the use of voxel representations and interpo-
lation to enable fast training and rendering [12, 35, 55, 77]. Instant NGP [35],
for example, demonstrates that a multi-resolution hash grid backbone enables
higher quality whilst reducing training time to seconds. However, these works
rely on powerful GPUs and often do not achieve real-time rendering for arbitrary
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scenes. Another line of work aims to represent neural fields as meshes, either as
a post-processing step [53, 63] or by direct optimization [5, 18, 54, 66, 73]. These
approaches can achieve high frame rates but their quality lags behind volumetric
approaches. More recently, another line of work [10,13,19,56] aims to represent
a neural field as a set of easily-cacheable assets such as sparse voxel grids, tri-
planes, and occupancy grids. These methods retain their high quality but often
exhibit large storage requirements, are slower to render on smaller devices, and
rely on complex custom rendering implementations [10]. In contrast, we optimize
lightweight point-based representations that achieve state-of-the-art quality, are
easily compressed, and naturally integrate with graphics software following a
rasterization pipeline.

Point-Based Representations. First works propose to render point sets as
independent geometry samples [15, 16], which can be implemented efficiently
in graphics software [57] and highly parallelized on GPU hardware [22, 58]. To
eliminate holes when rendering incomplete surfaces, a line of works explores the
“splatting” of points with extents larger than a pixel, e.g. with circular or elliptic
shapes [67, 76]. The recent work 3D Gaussian Splatting (3DGS) [21] achieves
unprecedented quality and fast training and rendering speed by introducing
adaptive density control in combination with efficient rasterization kernels. As
consequence, 3DGS is used in a variety of applications, including 3D human [79]
and avatar reconstruction [9, 33, 51], 3D generation [8, 26, 62, 75], SLAM sys-
tems [24,29,70], 4D reconstruction [68], and open-set segmentation [52,60]. Fur-
ther, works are proposed to address aliasing [71, 78] and point densification [7]
in the 3DGS representation. Finally, a recent line of works investigate com-
pression for 3DGS [11, 23, 34, 36, 37] leading to more compact scenes and faster
rendering. In this work, we combine a NeRF prior for stable optimization with
a point-based 3DGS representation for real-time rendering of complex scenes.
Compared to prior works, we enable high-quality view synthesis even for com-
plex real-world captures that might contain lighting and exposure variations.
Further, we develop pruning and test-time visibility rendering strategies leading
to 10× fewer Gaussian primitives at higher quality compared to 3DGS and with
inference times of 900+ FPS.

3 Method

Our goal is to develop a lightweight, real-time view synthesis method that is
robust even for complex real-world captures. In the following, we discuss the key
components for achieving this. First, we optimize radiance fields as a robust prior
for complex data (Sec. 3.1). Next, we use the radiance field to first initialize and
then to supervise the optimization of point-based 3DGS representations (Sec.
3.2.) We develop a novel pruning technique leading to a significant point count
reduction while maintaining high quality (Sec. 3.3). Finally, we cluster input
cameras and perform visibility filtering, further accelerating rendering speed to
up to 900+ FPS (Sec. 3.4). We show an overview of our method in Fig. 2.
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Fig. 2: Overview. 1. Given posed input images of a complex real-world scene, we train
a robust neural radiance field with GLO embeddings li. 2. We use the radiance field
prior to initialize and supervise our point-based 3DGS representation that we optimize
with a novel pruning technique for more compact, high-quality scenes. 3. We perform
viewpoint-based visibility filtering to further accelerate test-time rendering speed.

3.1 Neural Radiance Fields as a Robust Prior

Neural Radiance Fields. A radiance field f is a continuous function that maps
a 3D point x ∈ R3 and a viewing direction d ∈ S2 to a volume density σ ∈ R+

and an RGB color value c ∈ R3. Inspired by classical volume rendering [20],
a pixel’s final color prediction is obtained by approximating the integral via
quadrature using sample points:

cNeRF =

Ns∑
j=1

τjαjcj where τj =

j−1∏
k=1

(1− αk), αj = 1− e−σjδj (1)

where τj is the transmittance, αj the alpha value for xj , and δj = ||xj+1 − xj ||2
the distance between neighboring sample points. In Neural Radiance Fields [32],
f is parameterized as an MLP with ReLU activation fθ and the network param-
eters θ are optimized using gradient descent on the reconstruction loss:

L(θ) =
∑

r∈Rbatch

∥cθNeRF(r)− cGT(r)∥22 (2)

where r ∈ Rbatch are batches of rays sampled from the set of all pixels / rays
R. To further boost training time and quality, Zip-NeRF [2] uses multisampling
and an efficient multi-resolution grid backbone [35]. Due to the state-of-the-art
performance, we adopt Zip-NeRF as our radiance field prior.

Robust Optimization on Real-World Data. Real-world captures often con-
tain effects such as lighting and exposure variation or motion blur. Crucial for
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the success of neural fields on such in-the-wild data [28] is the use of Generative
Latent Optimization [3] (GLO) embedding vectors or related techniques. More
specifically, a per-image latent vector is optimized along with the neural field
that enables explaining away these view-dependent effects

L(θ, {li}Ni=1) =
∑

ri∈Rbatch

∥cθ,liNeRF(ri)− cGT(ri)∥22 (3)

where {li}Ni=1 indicates the set of GLO vectors and N the number of input im-
ages. This allows the model to express appearance changes captured in the input
images without introducing wrong geometry such as floating artifacts. At test
time, images can be rendered with a constant latent vector (usually the zero
vector) to obtain stable and high-quality view synthesis. For all experiments, we
follow [2] and optimize a per-image latent vector representing an affine transfor-
mation for the bottleneck vector in the Zip-NeRF representation.

3.2 Radiance Field-Informed Gaussian Splatting

Gaussian Splatting. In contrast to neural fields, in 3D Gaussian Splatting [21]
an explicit point-based scene representation is optimized. More specifically, the
scene is represented as points that are associated with a position p ∈ R3, opacity
o ∈ [0, 1], third-degree spherical harmonics (SH) coefficients k ∈ R16, 3D scale
s ∈ R3, and the 3D rotation R ∈ SO(3) represented by 4D quaternions q ∈ R4.
Similar to (1), such a representation can be rendered to the image plane for a
camera and a list of correctly-sorted points as

cGS =

Np∑
j=1

cjαjτi where τi =

j−1∏
i=1

(1− αi) (4)

where cj is the color predicted using the SH coefficients k and αj is obtained
by evaluating the projected 2D Gaussian with covariance Σ′ = JMΣMTJT ,
multiplied by the per-point opacity o [21], with M being the viewing transfor-
mation, J denoting the Jacobian of the affine approximation of the projective
transformation [80], and Σ denoting the 3D covariance matrix. To ensure that
Σ is a positive semi-definite matrix, it is expressed using the per-point scale
matrix S = diag(s1, s2, s3) and rotation R according to Σ = RSSTRT [21]. The
scene is optimized with a reconstruction loss on the input images and regular
densification steps consisting of splitting, merging, and pruning points based on
gradient and opacity values.

Radiance Field-based Initialization. A key strength of radiance fields lies
in the volume rendering paradigm [32], as opposed to prior surface rendering
techniques [40,61,74], enabling the ability to initialize, remove, and change den-
sity freely in 3D space. In contrast, explicit point-based representations can only
provide a gradient signal to already existing geometry prediction due to the
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rasterization-based approach. The initialization of this representation is hence a
crucial property in its optimization process.

We propose to use the radiance field prior for obtaining a suitable initializa-
tion. More specifically, for each pixel / ray r from the set of all rays R, we first
render the median depth from our NeRF model

zmedian =

Nz∑
i=1

αi∥xi∥2 where τNz
≥ 0.5 and τNz−1 < 0.5 (5)

where xi are the ray sampling points. We project all pixels / rays into 3D space
to obtain our initial point set

Pinit = {pi}i∈Krandom with pi = r0(i) + dr(i) · zmedian(r(i)) (6)

where Krandom are uniformly randomly-sampled indices for the list of all rays
/ pixels, r0(·) indicates the ray origin and dr(·) the normalized ray direction.
We found the median depth estimation to perform better than other common
choices such as expected depth by being exact sampling point estimates, and
we found setting |Krandom| to 1 million for all scenes to work well in practice.
Further, we initialize

ki = (k1:3
i ,k4:16

i ) where k1:3
i = cNeRF(r(i)),k

4:16
i = 0

si = (si, si, si) where si = min
p∈{p ̸=pi|p∈Pinit}

∥pi − p∥2 (7)

and set oi = 0.1 and qi to the identity rotation.1 Thus, for each scene we optimize

ϕ = {(pi,ki, si, oi,qi)}Ninit
i=1 (8)

Radiance Field-based Supervision. Radiance fields have been shown to ex-
cel even on real-world captures where images contain challenging exposure and
lighting variations [2, 28]. We leverage this strength of radiance fields to factor
out this complexity and noise of the data to provide a more cleaned up supervi-
sion signal than the possibly corrupted input images. More specifically, we render
all input images with our NeRF model fθ and with a constant zero GLO vector

If = {Ijf}
N
j=1 where Ijf = {cθ,lzeroNeRF (rj(i))}

H×W
i=1 (9)

where lzero indicates the zero GLO vector, H the height and W the width of the
images, and rj(·) the rays belonging to the j-th image. We can then use these
renderings If to train our point-based representations

L(ϕ) = (1− λ)∥Iif − Iiϕ∥22 + λ SSIM(Iif , I
i
ϕ) with i ∼ U(N) (10)

1 We set only k1:3 as we found to progressively optimize k leads to better results [21].
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where U is the uniform distribution and we use the default value λ = 0.2. Another
practical benefit of this approach is that we can train from arbitrary camera
lens types due to NeRF’s flexible ray casting, while the 3D Gaussian Splatting
gradient formulation assumes a pinhole camera model and it is unclear how this
can be efficiently extended to e.g. fisheye or more complex lens types.

3.3 Ray Contribution-Based Pruning

While 3DGS representations can be efficiently rendered thanks to rasterization,
real-time performance still requires a powerful GPU and is not yet achieved on
all platforms. The most important property for the rendering performance is the
number of points in the scene that need to be rendered.

Importance Score. To obtain a more lightweight representation that can be
rendered faster across platforms, we develop a novel pruning technique to reduce
the number of Gaussians in the scene whilst maintaining high quality. More
specifically, we introduce a pruning step during optimization that removes points
that do not contribute significantly to any training view. To this end, we define
an importance score by aggregating the ray contribution of Gaussian pi along
all rays of all input images

h(pi) = max
If∈If ,r∈If

αr
i τ

r
i (11)

where αr
i τ

r
i indicates the ray contribution for the pixel’s final color prediction

in (4) of Gaussian pi along ray r. We find that this formulation leads to improved
results compared to concurrent works that investigate similar ideas [11, 23] as
we use the exact ray contribution (as opposed to e.g. the opacity) as well as the
max operator (instead of e.g. the mean) which is independent of the number of
input images, hence more robust to different types of scene coverage.

Pruning. We use our importance score during optimization to reduce the overall
point count in the scene while maintaining high quality. More specifically, we add
a pruning step where we calculate mask values as

mi = m(pi) = 1 (h(pi) < tprune) where tprune ∈ [0, 1] (12)

and we remove all Gaussians from our scene that have a mask value of one. We
apply the pruning step twice over the the course of optimization similar to [11].
The threshold tprune provides a control mechanism over the number of points
that are used to represent the scene. In our experiments, we define two values,
one value for our default model, and a higher value for a lightweight variant.

3.4 Viewpoint-Based Visibility Filtering

Our pruning technique ensures a compact scene representation with a small
overall point count. To scale to larger, more complex scenes such as entire houses
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or apartments, we introduce a novel viewpoint-based filtering as post-processing
step that further speeds up test-time rendering without a quality drop.

Input Camera Clustering. First, we group input cameras together to obtain
a meaningful tessellation of the scene space. More specifically, let (xi

cam)Ni=1

denote the input camera locations for the set of input images I. We run k-means
clustering on the input camera locations to obtain k cluster centers (xi

cluster)
k
i=1

and assign the input cameras to the respective cluster centers.

Visibility Filtering. Next, for each cluster center xj
cluster, we select all assigned

input cameras, render the images from these viewpoints, and, similar to (11),
calculate an importance score and the respective visibility indicator list

hcluster
j (pi) = max

I∈Ii
c,r∈I

αr
i τ

r
i , mcluster

j = 1
(
hcluster
j (pi) > tcluster

)
(13)

where Ii
c is the set of images whose camera positions are assigned to the the

cluster center xi
cluster and tcluster is a threshold that controls the contribution

value of points that should be filtered out (we found setting tcluster = 0.001 to
work well in practice). Note that we are not restricted to the input views for
calculating these masks. In practice, we hence add random camera samples to
Ii
c to ensure robustness to test views. We calculate the indicator list mcluster

j for
each cluster center as a post-processing step after scene optimization.

Visibility List-Based Rendering. To render an arbitrary viewpoint, we first
assign its camera center xtest

cam to the nearest cluster center xi
cluster. Next, we select

the respective indicator list mcluster
i . Finally, we perform default rasterization

while only considering the points that are marked as active for the respective
cluster. This results in a significant FPS increase without any drop in quality.

3.5 Implementation Details

We set the number of initial points Ninit to 1 million in all experiments. For
threshold value tprune, we use 0.01 and 0.25 for our default and lightweight
models, respectively, and for the large Zip-NeRF scenes, we use 0.005 and 0.03.
We perform pruning after 16 and 24 thousand steps. We follow [21] and use the
same densification parameters except for the densification gradient threshold
value which we lower to 8.6e−5 for the Zip-NeRF dataset. We train our radiance
fields on 8 V100 GPUs (∼1h) and our 3DGS models on a A100 GPU (∼1h). For
the visibility filtering, we use k = 64 clusters and we found a small threshold
tcluster > 0 to work well in practice and set it to 0.001 for all scenes. For the
radiance field training, we follow [2] and use default parameters for all scenes.

4 Experiments

Datasets. We report results on the MipNeRF360 dataset [1], the most common
view synthesis benchmark consisting of 9 unbounded indoor and outdoor scenes.
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We further report results on the Zip-NeRF dataset [2] consisting of 4 large-scale
scenes (apartments and houses) with challenging captures that partly contain
lighting and exposure variations.

Baselines. On all datasets, we compare against 3DGS [21] as well as MERF [56]
and SMERF [10] as the state-of-the-art volumetric approaches that construct
efficient voxel and triplane representations together with accelerating structures
for empty space skipping. On MipNeRF360, we further compare against mesh-
based BakedSDF [73], hash-grid based INGP [35], and point-based approaches
LightGaussian [11], CompactGaussian [23], and EAGLES [14]. For reference, we
always report Zip-NeRF [2], the state-of-the-art offline view synthesis method.

Metrics and Evaluation. We follow common practice and report the view
synthesis metrics PSNR, SSIM, and LPIPS. While using techniques such as
GLO vectors is essential for high quality on real-world captures (see Sec. 3.1), the
evaluation of such models is an open problem such that recent methods [1,2,10]
train two separate models, one for visualizations, and one (without GLO vectors)
purely for the quantitative comparison. In this work, we always train a single
model that is robust thanks to the radiance field prior. For evaluation, we simply
finetune the trained models on the original image data to match potential color
shifts and to ensure a fair comparison. Next to measuring quality, we report
the rendering speed in frames per second (FPS) on a RTX 3090 GPU and the
number of Gaussians in the scenes (only applicable for point-based methods).

4.1 Real-Time View Synthesis

SSIM↑ PSNR↑ LPIPS↓ FPS↑ #G(M)↓
INGP [35] 0.705 25.68 0.302 9.26 -
BakedSDF [73] 0.697 24.51 0.309 539 -
MERF [56] 0.722 25.24 0.311 171 -
SMERF [10] 0.818 27.99 0.211 228 -
CompactG [23] 0.798 27.08 0.247 128 1.388
LightG [11] 0.799 26.99 0.25 209 1.046
EAGLES [14] 0.809 27.16 0.238 137 1.712
3DGS [21] 0.815 27.20 0.214 251 3.161
Ours Light 0.826 27.56 0.213 907 0.370
Ours 0.843 28.14 0.171 410 1.924
Zip-NeRF [2] 0.836 28.54 0.177 0.25 -

(a) Mip-NeRF360 dataset [1]

SSIM↑ PSNR↑ LPIPS↓ FPS↑
MERF [56] 0.747 23.49 0.445 318
SMERF [10] (K = 1) 0.776 25.44 0.412 356
SMERF [10] (K = 5) 0.829 27.28 0.340 221
3DGS [21] 0.809 25.50 0.369 470
Ours Light 0.838 26.11 0.368 748
Ours 0.839 26.17 0.364 630
Zip-NeRF [2] 0.836 27.37 0.305 0.25

(b) Zip-NeRF dataset [2]

Table 1: Quantitative Comparison. We compare against top-performing real-time
rendering approaches and report offline method ZipNeRF as reference. Our models
outperform both NeRF- and GS-based approaches, achieving state-of-the-art view syn-
thesis at higher FPS. Ours Light achieves a 10× point count reduction (shown as #G
in mio.) compared to 3DGS [21] while improving quality (1a). Our default model im-
proves even over Zip-NeRF [2] in SSIM and LPIPS while rendering 3,600× faster. On
the large-scale scenes in 1b, our models produce the highest SSIM values while render-
ing up to 3.3× faster than top-performing real-time methods such as SMERF [10].
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Bicycle

Kitchen

Flowers

Room

Berlin

NYC

London GT Ours Zip-NeRF [2] 3DGS [21]

Fig. 3: Qualitative Comparison. We show results on the mip-NeRF 360 dataset [1]
(top four) and Zip-NeRF dataset [2] (bottom three). Compared to Zip-NeRF, our
method better captures high-frequency texture details (e.g., tablecloth in Kitchen and
carpet in Room) and geometric details (e.g., leaves in Flowers and bicycle spokes in
Berlin). Compared to 3DGS, we obtain sharper (e.g., grass below bench in Bicycle and
shiny surfaces in London) and more stable reconstructions (e.g., color shift in Kitchen).
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Unbounded Scenes. We observe in Tab. 1a that our method leads to the best
quantitative results while achieving faster rendering times than prior state-of-
the-art real-time methods such as SMERF [10]. Notably, our model even out-
performs the state-of-the-art non-real-time method Zip-NeRF [2] in both SSIM
and LPIPS while rendering 1,600× faster. Our lightweight variant (“Ours Light”)
also exceeds prior works with a mean rendering speed of 907 FPS outpacing even
state-of-the-art mesh-based methods such as BakedSDF [73]. Also qualitatively
in Fig. 3, we observe that our model achieves the best results. Compared to Zip-
NeRF, our method better captures high-frequency textures (e.g., see tablecloth
in “Kitchen” scene in Fig. 3) and fine geometric details (e.g., see bicycle spokes
in “Bicycle” scene in Fig. 3). Compared to 3DGS, we find that our reconstruc-
tions are sharper and more stable while achieving a 2× and 10× overall point
count reduction with our default and lightweight variant, respectively.

(a) 3DGS (b) 3DGS w/ exposure module (c) Ours

Fig. 4: Robustness. On complex captures with lighting variations, 3DGS [21] leads to
degraded results (4a). When equipped with exposure handling modules [10,21], results
improve yet still suffer from floating artifacts and are overly smooth (4b). Our radiance
field-informed approach instead achieves high quality even for challenging captures (4c).

Large-Scale Scenes. For the Zip-NeRF dataset [2], we observe a similar trend
in Tab. 1b. Our default and lightweight variant outperform top-performing real-
time SMERF and non-real-time Zip-NeRF in SSIM while rendering significantly
faster. Notably, our lightweight variant achieves high quality with a mean SSIM
of 0.838 while rendering on average at 748 FPS. In contrast, the state-of-the-art
real time method for large scenes, i.e. the large variant of SMERF [10] with
53 = 125 submodels, achieves a slightly lower SSIM of 0.829 with a rendering
speed of 221 FPS. Also qualitatively in Fig. 3, we observe that our model achieves
high visual appeal with sharper and more stable reconstructions. In contrast to
3DGS [21], we find that our method is more robust on challenging captures as
shown in Fig. 4 where 3DGS leads to heavily degraded results on the “Alameda”
scene. Note that results still contain floating artifacts, even when equipped with
a per-image module that can handle exposure and lighting variations [10, 21].
Our method enables high-quality synthesis even for in-the-wild data.
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GT Ours w/o NeRF-based Initialization
(a) Qualitative Ablation Study of the NeRF-based Initialization.

GT Ours w/o NeRF-based Supervision
(b) Qualitative Ablation Study of the NeRF-based Supervision.

SSIM↑ PSNR↑ LPIPS↓ # Gaus. (M)↓
Ours 0.839 26.17 0.364 2.022
w/o NeRF Inititialization 0.830 25.71 0.382 1.583
w/o NeRF Supervision 0.835 25.79 0.372 1.849
w/o Pruning 0.839 26.14 0.364 3.049

(c) Quantitative Ablation Study on the Zip-NeRF Dataset.

Fig. 5: Ablation Study. Without (w/o) the NeRF-based initialization, geometric
and texture details might get lost (5a). Without the NeRF-based supervision, floating
artifacts appear if the views exhibit lighting or exposure changes (5b), and w/o pruning,
the scene point count is significantly larger without any quality improvements (5c).

4.2 Ablation Study and Limitations

NeRF-based Initialization. The NeRF-based initialization leads to better
quantitative and qualitative results (see Fig. 5). In particular, smaller geometric
and texture details might get lost, such as the back of the chair, the books behind
the monitor, or the sticky notes on the wall in Fig. 5a.

NeRF-based Supervision. The NeRF-based supervision leads to improved
results compared to optimizing the scene representation on the input views di-
rectly. In particular, for scenes where the input views exhibit exposure or light-
ing variations, floating artifacts are introduced to model these effects as shown
in Fig. 5b. In contrast, our strategy to optimize wrt. the NeRF-based supervision
is more stable and leads to better reconstructions for real-world captures.

Pruning. In Tab. 5c, we find that our model without pruning leads to similar
quantitative results while exhibiting a significantly larger point count. As a re-
sult, our pruning technique enables more compact scene representations while
maintaining high quality. In Fig. 6 we show that we can match the quality of
3DGS on the “Bicycle” scene, despite having roughly 10× less Gaussians in the
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Fig. 6: Pruning and Optimization Behavior. We show in 6a that lower pruning
thresholds up to 0.1 can maintain quality while reducing the point count by 4× for the
“Bicycle” scene. We match the 3DGS quality (0.77) with a 10× point reduction (5.66m
vs. 0.59m). In 6b, we compare the initial optimization progression of 3DGS and our
default model (pruning threshold of 0.01) on the “Bicycle” scene. We observe a steeper
incline in SSIM and can match the quality of 3DGS after less than 8k steps.

scene. Further, we observe a faster increase in SSIM over the first iterations such
that our default model can match the 3DGS quality even after only 8k iterations.

SSIM↑ PSNR↑ LPIPS↓ FPS↑
Ours 0.843 28.14 0.171 410
w/o Vis. Fil. 0.843 28.14 0.171 373
Ours Light 0.826 27.56 0.213 907
w/o Vis. Fil. 0.826 27.56 0.213 887

(a) mip-NeRF 360 dataset [1]

SSIM↑ PSNR↑ LPIPS↓ FPS↑
Ours 0.839 26.17 0.364 630
w/o Vis. Fil. 0.839 26.17 0.364 435
Ours Light 0.838 26.11 0.368 748
w/o Vis. Fil. 0.838 26.11 0.368 607

(b) Zip-NeRF dataset [2]

Table 2: Visibility Filtering. With this postprocessing, we achieve up to 10% FPS
increase on scenes with a central object focus (2a) and up to 45% improvement in
rendering speed when scaling to larger-scale scenes (2b) while keeping the quality fixed.

Visibility List-Based Rendering. Our visibility list-based rendering enables
up to 10% mean FPS speed up on the central object-focused MipNeRF360 scenes
and a up to 45% FPS increase on the larger house and apartment-level ZipNeRF
scenes (see Tab. 2). We conclude that this post-processing step is in particular
important when scaling to more complex larger-scale scenes.

Limitations. We optimize a radiance field and a 3DGS representation. While
achieving state-of-the-art performance with 900+ FPS, our training time (ap-
prox. 2h) is longer compared to single-representation models (0.5h - 1h). Further,
despite outperforming prior works on the MipNeRF360 dataset, we observe a
small gap to ZipNeRF in PSNR and LPIPS on the large-scale ZipNeRF scenes.
We aim to investigate how to achieve faster training and higher quality on large
house- and district-level scenes.
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5 Conclusion

We presented RadSplat, a method combining the strengths of radiance fields and
Gaussian Splatting for robust real-time rendering of complex scenes with 900+
frames per second. We demonstrated that using radiance fields to act as a prior
and supervision signal leads to improved results and more stable optimization of
point-based 3DGS representations. Our novel pruning technique leads to more
compact scenes with a significantly smaller point count, whilst improving quality.
Finally, our novel test-time filtering further improves rendering speed without a
quality drop. We showed that our method achieves state-of-the-art on common
benchmarks while rendering up to 3,000× faster than prior works.

Acknowledgements. We would like to thank Georgios Kopanas, Peter Zhizhin,
Peter Hedman, and Jon Barron for fruitful discussions and advice, Cengiz Oztireli
for reviewing the draft, and Zhiwen Fan and Kevin Wang for sharing additional
baseline results.
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